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Abstract--The process of determining appropriate constitutive equations for multidimensional time 
averaged two-phase flow equations is studied from the point of view of starting from general principles, and 
proceeding to specific constitutive equations which contain known physical effects. Energetic effects and 
phase change are not considered. Models are given for the interracial momentum transfer, the laminar and 
turbulent (Reynolds) stresses, and the pressure differences between the phases, and between a given phase 
pressure and the interracial average pressure. 

1. INTRODUCTION 
Predicting any features of two-phase flows is difficult, but attempting to predict multi- 
dimensional flows is particularly complicated due to the added difficulties associated with 
obtaining adequate models for the turbulent and interfacial transfer effects. 

There are several works in the literature which use multidimensional models for two-phase 
flow. The book of Soo (1967), and papers by Anderson & Jackson (1967), Murray (1965) and 
Hinze (1972) give equations for applications to particle-fluid mixtures. Solbrig & Hughes (1978), 
Crowe (1975), van Wijngaarden 1968 and Drew (1971) give applications to gas-liquid systems. 
Of these, only Drew (1971) uses general constitutive principles. 

In this paper, we shall approach the problem of determining constitutive equations for 
multidimensional two-phase flows starting from general considerations, and proceeding to 
equations which contain known physical effects for dispersed flows; that is, flows where one 
phase can be considered to be discrete and the other continuous (e.g. droplet or bubbly flows). 

The flow situation of primary interest is the flow of steam and water in nuclear reactor 
components. However, the flow of air (or other gases) and water may also be of importance in 
nuclear reactor technology. We shall base our development on the assumption that the flow 
consists of two fluids, which are adequately described by the compressible Navier-Stokes fluid 
dynamical equations. Separating these two fluids is an interface, at which interracial transfer is 
presumed to occur. 

We shall not consider energetics in this paper. Our interest here is in the mechanical effects 
in the two-phase flows. Therefore, we shall treat the equations for conservation of mass and 
momentum for each phase, with the assumption that no change of phase occurs. The 
assumption that no phase change occurs is a limiting one; however our focus in this paper is 
primarily on mechanical effects, as opposed to thermodynamic effects. 

2. EQUATIONS OF MOTION AND JUMP CONDITIONS 

We consider a two-phase flow which consists of two fluids separated by an interface. Within 
the range of applications we anticipate, these fluids are compressible Newtonian fluids. It also 
suffices to treat the interface as an entity which can support surface tension, but has no other 
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mechanical effect. For given initial and boundary conditions, the problem is uniquely specified 
by the Navier-Stokes equations and the jump conditions at the interface. 

The Navier-Stokes equations, governing the motion of each fluid away from the interfaces, 
are parabolic. Therefore, if we consider the stress on the liquid side of the interface, at some 
interfacial position _xi, the value of the stress vector is~f 

--_n~k + 2tzk_nk" [V.Vk + (V_vk)r]. 

Both Pk and _vk are the solutions of the Navier-Stokes equations, subject to conditions at the 
interface and boundaries, and the appropriate initial conditions. Thus this stress depends on the 
flow conditions at each point in the fluid, at the present time, and during the history of the 
motion. However, we wish to model it in terms of the averaged flow variables. It is by no means 
clear that such an approach can succeed. 

Since the values of all the exact field variables are uniquely determined by the initial and 
boundary conditions, the best resolution of the problem of predicting the two-phase flow would 
be to solve the equations of motion. Unfortunately, the present state of knowledge for solution 
methods for nonlinear partial differential equations precludes the possibility of anything more 
than a crude approximation to the solution in any realistic complicated flow situation. 

Therefore workers in the field of two-phase flow have developed averaging techniques 
which are applied to the equations for two-phase flows (e.g. Ishii 1975). The philosophy behind 
averaging is that the exact equations contain details of the flow which are of no use on the scale 
of interest for the motions. Averaging the equations gives a set of "filtered" equations which 
does not contain the unwanted details of the flow. The price paid for the lack of unwanted 
detail in the averaged equations is that several terms appear in the averaged equations which 
are not determined by the averaging process. These terms contain the effects of the lost 
information, and must be determined through appropriate constitutive equations. 

The average which lshii (1975) uses is the time average defined by 

_ l f  '+~' F(x, t) - At Jt F(x., t') dt', [1] 

where the integration is taken to mean Riemannian integration. From this averaging process, 
phasic averaged variables and interfacial averaged variables are defined in quite natural ways. 

In the following discussion, Ishii's notation and equations are used. 

(1) Conservation of mass [or phase k 

c~a~k ~_ V. (a~_Vk) = Fk, [2] 
dt 

where a~ is the fraction of phase k, t~k is the average density of phase k, _~k is the mass-averaged 
velocity of phase k, and Fk is the rate of mass generation of phase k at the interface. 

(2) Conservation of linear momentum for phase k 

C ~ - .~_ - - ~/(a~dk) V.(a~dk_~k) = -VakA + V" [ak(~ + ~r)] + a~dk + M~, [3] 

where/~k is the average pressure of phase k, ~ is the viscous stress tensor of phase k, ~ r  is the 
turbulent stress tensor, ~k is the average acceleration, and _Mk is the rate of momentum 
generation of phase k at the interface. 

tT  represents the transpose. 
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(3) Conservation of energy for phase k 

0 . _ +*Sk 2 . _ " 

= - V .  (a~,_~,) 

+ V. [a~(~ + ~T). ~fl + Ek, [4] 

where ik is the specific energy of phase k, _~k is the conductive heat flux in phase k, qk r is the 
turbulent heat flux, and Ek is the rate of generation of energy to phase k across the interface. 
The appropriate jump conditions are: 

(1) lnterfacial mass conservation 

(2) Interfacial momentum conservation 

2 

~l Fk = O. [5] 

2 

.M~ = .Mm, [6] 

where _Ms represents the mixture volumetric momentum source, which results from surface 
tension, and depends on the geometric state of the interface. 

(3) Interracial energy conservation 

2 

Ek = E s ,  [7] 

where EI  represents the surface energy source due to surface tension effects. 
The discussion will concentrate on the mechanical aspects of the problem, and leave 

energetic considerations for the future. Assume that the densities ~ are known, and that F~ 
(= -F2) is zero. 

The terms for which the constitutive equations must be determined include M~, 5, ) r ,  Mm 
and/~ -/~2. 

Not all these variables are independent. By[6], 

M I = - M 2 + M . .  [8] 

Thus, if _Ms is known, we need only determine a constitutive equation for M2, since .MI is 
determined by [8]. 

It will be useful to examine the definition of each of the terms which must be constituted. 
This gives an idea of the origin of the terms to be constituted in terms of the averaging process 
and the exact fields involved. We have 

1 1 

--/~,.Vk_Vk • [10] 

Here, Tk is the instantaneous stress tensor, which is equal to - p j  + 21Zk[V~k 4- (V ok)T], where T 
denotes the transpose of the tensor. 
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There is one conceptual dit~culty with Ishii's derivation. If the interface is motionless at x at 
any time between t and t + At, then v,~ = 0, and _Mk is singular. It has become acceptable to 
treat this fundamental shortcoming of Ishii's model as an annoyance, but to proceed to use it 
anyway. The seriousness of the problem can be illustrated by the following argument. If the 
flow is bubbly, the interface does not stand still very often. If the interface happens to come to 
rest at _xl, at time t, then _Mk at xl is singular for all times t such that t~ - At --- t -< t~. To  some 
degree, then, the singularity is localized in time. Furthermore, in bubbly flow, the interface 
coming to rest at x~ at t~ is a random event, and it is unlikely that it happens again near _xb or 
very soon after tl. 

In contrast, consider separated flow. If the interface is exactly at rest for all t, then M~ is 
singular for all t, at any x on the interface. If the flow is separated, but the interface is wavy, 
then the singularity of .Mk is spread out in space, over all points where the interface comes to 
rest. There are many of these points, and the occurrence of a singularity repeats in time, as the 
interface moves to that point, stops, and retreats. For points far from the interface, Mk is zero, 
since no interfacial crossings occur there. 

For a well mixed flow, where the coming to rest of an interface is random and not too 
frequent, it is considered to be permissible to ignore the difficulty. For separated flows, 
however, the difliculty does not seem to be negligible. Perhaps the correct view of the difficulty 
in the separated flow case, is that the model cannot be generally valid for any reasonable choice 
of constitutive equations. 

The point should be emphasized that Ishii's derivation is rigorous and precise. The entire 
problem is reduced to the determination of appropriate constitutive equations. The above 
argument suggests that, at least in some cases, it may not be possible to determine general 
constitutive equations. 

Therefore, constitutive equations are formulated with specific flow regimes in mind, and 
results derived from the resulting conservation equations should be interpreted appropriately. 

If the flow is well mixed, such as bubbly flows or droplet flows, then Ishirs time averaging 
procedure gives averaged quantities which are straightforward to interpret. Therefore, the task 
of determining appropriate constitutive equations is conceptually easier than in the case of 
separated flow. 

For a well mixed flow, it can be assumed that enough interracial points intersect the point x, 
during the averaging time interval from t to t + At, that the time average of the interfacial stress 
is equal to the average value of the stress over the surface of a typical "particle". (We shall use 
the term particle to denote dispersed phase entities in the well mixed flow.) When this 
assumption about the averaging can be made, formulating a constitutive relation for the 
interracial force on the dispersed phase becomes a task of generalizing the force on a single 
particle to the appropriate two-phase flow situation. 

Furthermore, when the /low is well mixed, the correlation of the velocity fluctuations, 
-~,_v~,v~,, may be more straightforward to model than in the separated flow case. For instance, in 
the separated flow case, the velocity fluctuations may represent certain specific motions, such 
as wave motions caused by a Kelvin-Helmholtz instability. These specific fluctuations must be 
considered when constitutive equations are determined for the Reynolds stresses. When the 
ttow is well mixed, the velocity fluctuations should indeed be random. 

Consider the interracial momentum transfer _/_/_Mk. Ishii writes 

[I11 

where 

_Mr = r j ~ ,  [12] 
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[13] 

[14] 

We note that _Mk r represents a momentum source to phase k due to change of phase. Since 
we are not considering phase change, we shall take _Mk r = 0. Furthermore, the combination 
_Mk~+ .Mk t +~k~Vak is the average interfacial force on phase k due to the stress forces on the 
interface. Ishii separates the average pressure force at the interface ~kiVak from the rest of this 
force, and combines _Mk ~ and _Md into a force _M~ d, where 

_n,d--a _M,' + _Mk ~ . [15] 

Ishii treats _Mk a as a drag force, but it clearly contains other forces as well. Specifically, the drag 
force on a particle is due to the viscous forces at the surface of the particle, plus a contribution 
due to the net variation of the pressure from its interfaciai average (form drag). Analysis of the 
virtual mass force indicates that acceleration effects also cause a variation of the pressure from 
its interfacial average. Hence[15] also contains virtual mass effects. Moreover, lift effects are 
also included in[15]. 

3. CONSTITUTIVE EQUATIONS 

Constitutive equations describe the behavior of ideal materials by specifying how the 
material interacts with itself. In two-phase flows, we wish to describe the behavior of the 
two-phase mixture by specifying how each phase interacts with itself and with the other phase. 
Indeed, the important information about the microscopic details and profile effects which are 
lost during averaging must be replaced to some degree in the constitutive equations. 

Two phase flows are further complicated by the appearance of flow regimes. If a general 
constitutive approach is to succeed, it must be assumed that enough information to specify flow 
regime must be contained in the averaged variables. It has not been established whether it is 
possible to describe flow regimes with multidimensional averaged variables. 

Constitutive equations are needed for M.k d, _Mm,/~-/~,/~l-/J2, ~ and z_.t, r. It is normally 
assumed that if the averaged fields are known, the values of the above variables can be 
determined. This assumption is little more than hope, but it is crucial to making predictions with 
averaged equations. 

In this section, we shall first review the general principles used in formulating constitutive 
equations. We shall then apply these principles to the two-phase flow situation in order to 
obtain general forms for the variables to be determined. We shall then discuss the simplification 
of these general forms into useful constitutive equations. 

The basic principles for formulating constitutive equations (Truesdell & Noll 1965) are: 

(1) Coordinate invariance 
This principle states that constitutive rules must be stated in a way which does not depend 

on the coordinate system. An example of a "constitutive equation" which violates this principle 
is 

Mwa - O, 

M~a = O, 

M,d = bM(~2~ - ~,), [16] 
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for some given Cartesian coordinate system (x, y, z). The correct expression for such a flow 
would be _M1 d= bM(_~2-_~). It may well turn out that correctly formulated constitutive 
equations, when used in a specific flow situation, produce solutions of the form[16]. Care must 
be taken to avoid using any prior knowledge of the solution in formulating constitutive 
equations. The constitutive equations must be able to represent the most general situation, 
subject to the dependences proposed. One way to insure that the principle of coordinate 
invariance is satisfied is to work with the dyadic or invariant notation. 

(2) Equipresence 
This principle states that if one variable is known to depend on one specific field variable, 

then all other variables to be constituted must be allowed to depend on the same variable. For 
example, if we believe that _Mk ~ depends on .vl- _v2, then we must allow ~, z_.k r,/~k-/~kl and 
/~ -/~2 to also depend on _~1 - _~2. This principle prevents a priori prejudicing of the constitutive 
equations by selectively excluding certain dependencies. It is this principle which makes the 
general approach impractical in the final analysis, since it forces us to include dependencies for 
which there is no physical evidence. In our application of this principle to two-phase flows, we 
shall give the general forms for the constitutive equations satisfying this principle, but then 
retain only those terms for which there is some physical (or intuitive) reason that they should 
be included. This gives confidence in the constitutive equations so derived, since they contain 
known physical effects, but are still derived from the general forms. 

(3) Material[tame indifference (objectivity) 
This principle states that variables, for which constitutive equations are needed, cannot 

depend on the coordinate frame in which the variables are expressed. (Here, "coordinate 
frame" denotes Euclidean three-space, plus time.) Coordinate frames are objects constructed 
by human beings to quantify motions. The materials which are undergoing the motions do not 
recognize these frames. 

(4) Homogeneity 
This principle states that constitutive equations which express the different behavior of 

different materials must do so by following those materials. For example, if a bar is made of 
steel for - L  < x  <0,  and made of aluminum for 0 < x  < L at t = 0, then the appropriate 
stress-strain law for each material must be used in that material. Thus the modulus of elasticity 
would depend on position, but only in such a way that if the motion of each point of the bar 
were known, the modulus of elasticity appropriate to an arbitrary point in the bar at a given 
time could be determined by tracing back the history of that material to determine whether it 
were steel or aluminum. If the bar were homogeneous (all steel, for example) then the modulus 
of elasticity would be independent of position. As an example of a situation where such 
consideration may be required in two-phase flows, consider a tank of water, with air being 
injected in one place, and steam being injected in another. The air-water mixture, and the 
steam-water mixture have different characteristics, and different constitutive assumptions are 
needed for each. In this case, the region occupied by steam-water mixture, and the region 
occupied by the air-water mixture must be tracked. 

(5) Isotropy 
If neither of the two fluids making up the two-phase mixture has a preferred direction, the 

two-phase mixture is isotropic. We note that in a specific flow situation, a flow possessing a 
preferred direction may arise. Indeed, a shearing flow in a single phase viscous fluid shows 
preferred, or special, directions; but the material itself does not. We emphasize that it is 
essential to separate the process of determining constitutive equations from the solution of the 
equations of motion. 
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(6) Just setting 
This principle states that the equations of motion, supplemented by the constitutive 

equations, and appropriate initial and boundary conditions, give solutions which are unique. It 
is extremely difficult to verify that this principle is satisfied. 

(7) l~mensional invariance 
This principle states that the constitutive equations must be dimensionally correct, and that 

arbitrary functional dependences can only occur through dimensionless variables. 
In addition to the above general constitutive principles, there is a further principle which can 

be applied to two-phase flows. 

(8) Correct low concentration limits 
This principle states that, in the limit as ak--'O, the equation of motion for phase k 

approaches the appropriate single particle equation, with the equations for the other phase 
approaching the correct equations for that single phase fluid. This principle suggests the 
appropriate variables to use in the constitutive equations. We shall also use it to establish 
physical reasons for retaining various terms when we proceed from the general constitutive 
equations to the equations valid for specific flow regimes. 

It is not sufficient to postulate forms for the constitutive equations, and apply the principle 
of correct low concentration limits to determine the coefficients involved in these constitutive 
equations. As with any continuum mechanical theory, the coefficients in the constitutive 
equations must be evaluated by comparing with carefully done experiments done in simple 
geometries involving simple flow characteristics. On occasion, the required observations can be 
made by "thought experiments". Nevertheless, there can never be too many experiments which 
attempt to verify the constitutive equations, or to evaluate the coefficients which appear 
therein. 

The constitutive principles are applied to two-phase flows, in order to determine functional 
forms for: 

_M/, _M., A,, [17] 

in terms of 

~k, a~dat, v,k,  #k, w_~, a~dat, . . . .  [18] 

where ... represent microscopic quantities, such as the exact viscosities and densities of the 
two fluids involved, and other geometric parameters, such as the average bubble or droplet 
radius, or the inteffacial area density. It should be noted that the general theory does not need 
explicit information on flow regime; however, the specific variables in [18] may indeed specify 
flow regime. 

The specific quantities displayed in [18] include all the vectorial and tensorial quantities 
needed to formulate a theory which is first order in space (i.e. involves first derivatives in the 
spatial coordinates) and is first order in time in the velocity variables. Many of the forces 
known or suspected to be important in two-phase flows are included in this theory. 

The velocity variables in [18] cannot appear arbitrarily in the constitutive equations, since 
the constitutive equations must be objective. 

The concept of objectivity is now examined. Consider a coordinate change from system _x to 
system _x', specified by 

MF Vol. 5, No. 4--B 

_x' = Q(t)._x + _b(t), [19] 
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where Q(t) is an orthonormal tensor, and _b(t) is a vector. A scalar quantity is objective if 
~' = 4'; that is, if the value of 4~ is the same in the primed system as in the unprimed system. A 
vector is objective if it transforms coordinates correctly; that is, if _v'= Q._v. A tensor is 
objective if T '=  Q. T. qr .  

The scalar functions ak and ra (where ra is the radius of the dispersed phase, where 
applicable) are objective. The partial derivatives with respect to t are not, however. To see this, 
consider a scalar function $(x, t). In terms of the primed coordinates, we have 

4/(x', t) = ~(_x,  t). [20] 

Taking the partial derivative of $, keeping _x constant gives 

= at I ; '  at ~_-~i , 

[21] 

Therefore od, lot is not objective. 

It is relatively straightforward to show that Dj~Dt ~ a a a t  + v i.V4~ is objective, using 
arguments similar to that in[21], and those below, for the velocity. We shall take a different 
approach here, which involves changing 4, to material coordinates. For this, we have a motion 
given by _x = _x(_A, t), where _x(A, 0) = _A. We define q~(_A, t) = $(_x(_A, t), t). Then 

#(_x', t) = O'(_A', t) = ¢(A, t) = 4,(_x, t), [22] 

where _A' is the initial location (at t = 0) of the particle now at _x'. We note that 

_A' = q(0)..-3 + b(0). [231 

a¢ a¢' , I a¢' , I 
= = - ~ - ( A , t )  -~-(A, t) - ~  (_23, t) .a a,' [24] 

since a A'/at = 0. Thus, the material derivative of a scalar is objective, so that 

Dtad Dt, ~rS Dt [251 

are objective. 
Next, objective combinations of the vectors are considered. Differentiate [9] with respect to 

t, following a material particle of phase k: 

-, A Di.x' 
v~=--ff-= q(t). x + q.~.k + b. [26] 

Thus, in general, ~ # ~ .  ~. Hence -~k is not objective. This is also obvious on physical 
grounds, since the velocity observed for some object depends on the motion of the reference 
frame. 
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It is easily seen that relative velocity is objective. To see this, consider[26] for k = l, and 
k = 2, and subtract one from the other, yielding 

~i -_~  = ( q . x  + Q._~, + ~ ) - (q '_x  + Q= -_~2+ b) = q '(_~,-  ~2). [271 

A 
Obviously, _vr = _f~-_~,. is objective. 

A combination of accelerations which is objective is sought. Consider 

D,_~ /Z_~i 
Dt Dt 

Thus 

• • DI~2 b..) 

-(O x. 

_ [ D I V _ 2  - 

_a12 =ADIfZDt- D2_~lOt -- \--ff/-(tg/~2 +/~1" - " V/)2 ~ ) - t-~- + V2" v - / ) l / / t g ~ l  - - - ~  

[28] 

[29] 

V'_x = Qr,  [30] 

[31] 

Taking the transpose of [31], 

_~;,V' A (V ,~ )r  = Q_-" (_~kV)" Q T  + Q .  QT. [32] 

But Q__.Q__ r = ~ so Q~. Q__ r + Q__. Or = o. Thus it is evident that 

DkbA 1 = ~ [VOk + (V_~k) r] [33] 

is objective. Furthermore, 

1 ~.,2 = ~ [V_~, + (V_~9 T] [34] 

I ~2, = ~ [V_~2 + (V_~l) r] [35] 

we have 

is objective• 
Consider objective combinations of the velocity gradients. By taking the gradient (with 

respect to _x') of[26], and using the result that 
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are also objective. Note that ~12 + ~zl = Dtb + __D2b. Thus only three of the tensors D~b, D2b, ~ :  
and ~2~ are independent. Furthermore, it is more convenient to work with the objective tensor 

DI2 = A 7(_~1 - _v2). [36] 

We note that 

DI2 = 2(O10 - 921) [37] 

Thus we may replace[18] by 

. . . . .  [38] 

These variables, and combinations thereof, are objective. 
Constitutive equations determined from[38] are objective. More information can be deter- 

mined from consideration of the vectorial or tensorial nature of the variables to be constituted. 
If [ is a scalar function, then [ can depend only on scalar invariants formed from[38]. The 

complete list of scalar invariants which can be formed from[38] is given in the appendix. 
Basically, any scalar which can be formed from the vectors or tensors in[38] by invariant 
operations is a scalar invariant. Thus the length of a vector is a scalar invariant. Also, the dot or 
scalar product of two vectors is a scalar invariant. For a tensor T, there are three scalar 
invariants, Ir  = tr T , / / r  = T: T, and IIIr= det T__. Thus 

[ = [(S,, $2 .... ),  [39] 

where S~ are the scalar invariants given in the Appendix. 
If _F is a vector function, then _F must be linear in all the vectors which can be formed in an 

invariant way from [38]. Thus 

_F = ~i air.i, [40] 

where Yi are the possible objective vectors given in the Appendix. Each scalar coefficients ai 
can be a function of the scalar invariants S t. 

If ~ is a second order tensor, then = 

~: ~ Bi~. [41] 
I 

where ~ are the objective tensors given in the Appendix. Again, the scalar coefficients Bj are 
each a function of the scalar invariants S~. 

4. SPECIFIC FORMS FOR CONSTITUTIVE EQUATIONS 

As shown in the Appendix, if we were to use this general approach to give forms for the 
constitutive variables in[17], we would be required to determine 2771 scalar functions of the 
679 scalar variables! Therefore, it seems impractical to attempt to carry out a completely 
general approach any further. We therefore propose that the principle of equipresence must be 
compromised. We shall, however, retain the rest of the general constitutive formalism. Thus, 
we seek to formulate constitutive equations which satisfy all the general constitutive principles 
except equipresence. Our approach for the remainder of this paper gives constitutive relations 
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specifying the behavior of specific two-phase mixtures which obey all the constitutive prin- 
ciples except equipresence. 

Consider a phenomenological approach, to determine useful constitutive equations within 
the framework of rational mechanics. In this approach, combinations which have shown to be 
important in experiments or in specific solutions to the equations for the flow around particles, 
are included. The other possible terms in the constitutive equations are then ignored. While this 
approach can produce good results when applied to certain flow situations, it can break down in 
others if important terms have been neglected. 

4.1 S t r e s s e s  

Consider the stress tensors ~ and ~r. For the laminar stresses, Ishii (1975) applies the time 
average to the exact stress. Therefore, we have 

=/z,(V_Vk + _Vk~7) 

= ~k(V_~k + _ekV) + ± ~ Y~ ± (nk~+ ~;,nk) 
- Ol k ~.At ] l)ni . . . .  

= 2ak( __Dkb + Dk,), [42] 

where 

We must now specify a constitutive relationship for Dk~. 
Equation[41] shows that Dk~ can depend on many tensorial quantities. Ishii looks at the 

specific situation where one phase (in the form of either droplets or bubbles) is dispersed. For 
k = d, we have 

D d i  ~-  0 .  [43] 

Also, using ~' _ _ c ~ Vc - V_a, we have 

De, = - ~-~a~ [Vac(_~d - .~)  + (_~d - _~ )Vac] .  [44] 

While it seems unlikely that[43] and [44] would hold in general, the form of[44] suggests that 

~ ,  = _ b ( a k )  [Vak(.~i - Ok) + (-Vi -- -tSk)Vak] [45] 
2ak 

where j = 1 if k = 2, and ./= 2 if k = 1. Ishii calls the term b k ( a )  the mobility of phase k. 
Consider the Reynolds stresses ) r .  There are practically no experiments to determine the 

form of these tensors. The general approach, J41] gives 674 coefficients, which need to be 
evaluated to specify ) r .  Of the few observations which have been made, none have attempted to 
determine values of the coefficients in the form given by[41]. Ishii postulates that 

~ r  = a j  + a,,/~, + a,2 ~/~, "__Dk, [46] 
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where ~ = Dkb + D,,. This is a generalization of Prandtrs mixing length argument. Ishii further 
argues that 

r__J = 2~Zkr __~, [47] 

where tZk T is the eddy viscosity, and can depend on the scalar invariants. 
Both the forms [46] and [47] have deficiencies in some important flow situations. We note 

that if the flow is undirectional shear flow, with _~k = fk(y)i, and O~k = ak(y), then both __Dkb and 
Dk~ are proportional to the tensor _/j + j_/. In this case, the diagonal terms, as given by [47], are 
zero. The diagonal terms of r_.k r, given by 

rk,, = --pkV'k2, (no sum on i) [48] 

can be zero only if the flow is laminar, since, if v~ = 0, then Vk, = V-k,, and there are no velocity 
fluctuations. Thus the simple model[47], is obviously incorrect. We further note that the 
diagonal terms of ~_.r are important in determining multidimensional effects. Drew et al. (1978) 
have shown the importance of the liquid phase turbulent kinetic energy in determining the 
radial distribution of the gas phase in the steady, fully developed concurrent flow of a bubbly 
mixture of air and water in a circular pipe. 

Consider[46] in the situation of gas bubbles rising uniformly through quiescent liquid. The 
passage of the bubbles generates liquid phase velocity fluctuations which must appear in the 
term r_f. Ishii's simple model, [47], gives no Reynolds stresses in this flow. Ishii's more general 
model, [46], gives _rj r = a~, so that the Reynolds stress is isotropic. Since the flow is expected to 
be different in the direction of rise, from the direction perpendicular to the rise direction, Ishii's 
model seems inadequate. 

The invariant quantity which picks out the direction of rise is _fl- _f2. Also, Val is an 
invariant quantity. Thus a better constitutive model should be 

r_ff = aj__ + akin. + bl(~, - _v2)(_v, - _v2) + b2ValVal [49] 

where ak0, akl, bl and b2 may be functions of al, [_v,[I.~, llok, IIIqk . . . . .  This retains the term 
which is believed to adequately model the shearing effects, in the form ak~Ok. Moreover, it 
corrects this by adding terms which model the diagonal terms of z_.J, and allow a difference in 
the diagonal element in the directions of relative velocity and the volumetric vapor (i.e. void) 
fraction gradient. 

4.2 Interfacial force 
Consider the interfacial force density _Mk. Equations [ l 1]-[15] suggest that a constitutive 

model is needed for _Mk d, k = 1 and 2, or equivalentlyf for _M1 d and _M,,. (Recall we are assuming 
that _Mk r = 0.) 

Constitutive equations are now formulated for the volumetric interfacial force on the 
dispersed phase, _Md d, which are appropriate when one phase is dispersed in the other (such as 
bubbles in liquid, or droplets in gas). 

Since _Mr is a vector, the general constitutive equation for it is given by [40]. However, not all of 
the terms in[40] correspond to forces which have been observed or calculated. 

We now postulate a constitutive relation for the volumetric interracial force on the 
dispersed phase which avoids this difficulty. To do this, we shall treat the force on the dispersed 
phase, plus the interface. Thus, the force for which we now derive a constitutive equation is 

fSee [61. 
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- .Me a = .Md d + .Mm. In the absence of surface tension, Mm = O, and the force becomes _Mr. Thus 
we postulate 

-M_c a = A , (  f.c - v_-a) + A2_acd + A3( v_-~ - f.a) " Dc~ + A4( V.c - ffd)" Da~ 

+ As(~_c - ~_a)'Dca + A6Dcd" (v_c - -  V_a) [50] 

where AI-6 are scalar functions of the invariants. 
The first term in [50] represents the classical drag forces. It is customary to write 

3 Co [51] 

where rd is the effective radius of the dispersed phase, and the drag coefficient, Co, is a function 
A 

of the invariants. It is usually assumed that Co = Co(ad, Red), where Rea =2pcl_~c - _~dlr, d/zc is 
the particle Reynolds number (e.g. Zuber & Ishii 1978). It is not clear, however whether such 
models are valid for multidimensional application. The models are usually verified by compar- 
ing the relative velocity observed in various flows to the relative velocity predicted using a 
balance between buoyancy and drag. Resulting correlations have been checked against many 
sets of data, however; almost all of these data have been global, and therefore may be more 
appropriate for cross-sectionally averaged drag models than local models. Lahey et aL (1979) 
have shown that the existing correlations do not capture all the detailed local data trends, when 
compared to the bubbly flow data taken by Serizawa (1974) at different radial positions in a 
circular pipe. Figures 1 and 2 indicate the difficulty. We note that _MJavr 2 = 3CO/Srwl was 
determined from Serizawa's data by calculating the buoyancy, and turbulent and laminar 
stresses at each radial position. Figures 1 and 2 indicate that the measured dependence of Co 

on ad brackets two well-known correlations (Wallis 1976, Zuber & Ishii 1978). A definite trend 
in the data is not well represented in these correlations, however. Specifically, the data show 
that Co is lower than the value given by the correlations near the centerline but higher than the 
value given by the correlations near the wall. It is not known at this time whether this is due to 
an inadequate assumption about the variables of importance in Co, or whether an important 
term is missing from [50]. 

M v / a V r  2 (g /cm 4) 
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2 . 0 -  ,-,=.=0.125 0 
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Figure 1. Comparison of Wallis' (1976) "dirty water" drag models with Serizawa's (1974) data. 
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Figure 2. Comparison of Zuber & Ishii's (1978) undistorted bubble drag model with Serizawa's (1974) data. 

The collective terms 

Az.a~a+ As(~.c-~.a) 'Dcd = A2 [(-~t~ + _~d • V_~c) - (-~ta + _~ • V_~d)] 

+ As(~_c - ~_d)" V(e.c - e.a) [52] 

are referred to by Drew et al. (1979) as the volumetric virtual mass force. This particular term is 
the most general accelerat ion force which can be included in _Mk. There are convective 
accelerations in the remaining terms in[50], but these are necessarily coupled with non- 
convective terms. For example, consider the term 

1 l _ _ 
A3(v_c - if_d)" D__c b = ~ A3( ff.c - V.d)" VV_c + ~ A3(V_Vc)" (_Vc - _Vd). [53] 

for small ad. Drew et ai. (1979) write 

1 
A2 = -~ aap~ [54] 

A2 = adPcCvM( Otd) [55] 

for the more general case. Houghton's (1978) data give C v u  ~ 0.1-0.5 for various particles in 
accelerating flows. Drew et al. (1979) also write 

A5 = adpcCvu(aa)" (1 - h (ad)), [56] 

In[53], the term ( I / 2 ) A 3 ( ~ c - ~ d ) ' V ~ ¢  can be viewed as a convective acceleration, but 
(l/2)A3(V_~c)" (_~c - _~d) can not. 

For a single spherical particle in a nearly inviscid quiescent fluid, a force on the sphere is 
generated when the sphere accelerates. This force is equal to one half the mass of the fluid 
displaced by the particle, times the acceleration of the center of mass of the sphere. This 
argument suggests that 
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where ;t(aa) must be found by experimental observations. They assert that, as ad->0, A(aa)->2, 
in order that the virtual mass acceleration reduce to the acceleration of a single particle in an 
infinite fluid. No appropriate observations have been found to compare with the form given 
by [50]. It is anticipated that observations on two component, two-phase critical flow may give 
information on A(ad), since large spatial accelerations are found in choked flow. 

The term (ll2)A3(~.c-~.a).(Vvc) r represents a force on the dispersed phase due to the 
interaction of the relative velocity and the shear of the continuous phase. Such a force can arise 
in slow viscous flow around a single sphere (Saffman 1%5, 1968, Harper & Chang 1968, Drew 
1978), where it is called a lift force. To see that (1/2)A3(_~- _~d)'(V_Vc) r is a lift force, consider 
the special flow situation when Ok = 0k(y)_/. Then 

d~c. (_~ -_~d)" (V.~c) r = ( ~  - ~d) ~ - y l  [57] 

is perpendicular to the direction of the relative velocity, and therefore is "lifting". It should be 
noted that the calculations mentioned above is for slow viscous flow. There is no obvious 
indication that the lift force is of practical importance in gas-liquid flows, where the flow is 
almost never slow viscous flow. We include this force because it is a known force in some 
flows. On the other hand, the terms A4(~.c- v.a)'Ddb and A6Dca "(~_~- V.d) have no analogs in 
single particle calculations, and will be neglected. Thus, [50] becomes, 

3 CD f/O~_~ _ - _  \ la~_a ~_~'V~_d \) 

+ (1 - A(ota))(~c - _Vd)" V(_Vc -- _Vd)~ + A3(vc - v.a)" Dcb. [58] 
. I  

This equation is a constitutive equation for _Md d which contains known drag, lift and virtual 
mass forces. 

It is important to note which terms which are not included in[58]. First, no terms 
proportional to Val have been included. There is no evidence that such a term is needed. 
Single- and multiple-sphere calculations do not indicate the need for such a term. 

There are other known forces which are not included in[50], e.g. the Basset force. 
The Basset force, for a single sphere in a still fluid, is (Soo 1%7): 

3 2-- f t  dU/dt' 
-~ rd v (  ,rpc~c) J_oo v--~_ t, ) dr [591 

where U_(t) is the velocity of the centre of the sphere. In general, such a force depends on the 
history of the particle and fluid motion. While it is within the scope of technical competence to 
include such terms, we choose not to do so in this paper. Indeed, to include history or memory 
effects systematically would be difficult, since so many variables are believed to be important in 
the constitutive equations. 

Another known force which is not included in[44] is the Fax6n force. The Fax6n force on a 
single sphere in a viscous fluid is given by (Happel & Brenner 1%5): 

d 2 y  
~rrd3ttc dy2, [60] 

where V(y) is the fluid velocity profile far from the particle, which is assumed to be in linear 
shear, ra is the sphere radius, and ~c is the fluid viscosity. The Fax6n force depends on the 
second spatial derivative of the fluid velocity far from the sphere. To include this force in a 
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general development would require that terms proportional to the third order tensors VVv~ and 
VV_Vd be included in the list of constitutive variables. 

4.3 Pressure differences 
Consider the scalar functions for which we must formulate constitutive relations. Within the 

framework of the general theory,/~k -/~k~ can be a function of the 679 scalar invariants given in 
the Appendix. 

It is customary to assume that /~k--/Jk~ =0. This is not generally true; for example, in 
situations where the bubbles can expand, it is well known that the Rayleigh equation determines 
the relationship between the interfacial pressure and the pressure far from the bubble. Thus the 
most general model for Pk --~k, should contain the Rayleigh equation. 

First, we note that when no motion is present, we must have /~k----/~k~. However, if we 
assume that ~k--~k~ =f°k(ab IV~ll, rd), then, necessarily, we must have fT,-0. Thus, a more 
general assumption is needed. 

For many transients of practical significance we expect/~d ------/~d~ with the dispersed (vapor) 
phase. This is due to the fact that the dispersed phase occupies relatively small regions within 
which no large pressure gradients can be supported. 

Thus, we shall assume that the expansion/contraction of bubbles can give a contribution to 
_Pk -_Pk~ only in the continuous (liquid) phase. 

We further note, from the continuous phase momentum equation [3], that the net volumetric 
force on the liquid phase due to the term/~c -/~c~, is of the form (/~c - / J J V ~ .  Thus, this force 
can have an effect only when Va~ ~ 0. This complicates our task, since, in order to see the 
Rayleigh effect, we must have a flow situation with expanding or contracting bubbles, and a 
non-zero gradient of the volumetric concentration of phase k. 

The classical Rayleigh equation for the growth of a single bubble in an infinite liquid is 

{ [ d r'' 3(drb 21+ drb/ 
Pt~ - Pt, = - Pt rb -d-~ ~- ~ \ dt ] j rb d t J  [61] 

where Pt~ is the liquid pressure far from the bubble, and rb is the bubble radius. For the more 
general case, we expect that/~c -/~¢, should depend on r~(gi, t), the radius of the dispersed phase 
associated with location _x, at time t. Also, the appropriate derivative to use should be Dd/Dt, the 
material derivative following the dispersed phase. Thus we assume, 

:c - :~ = f (  r~, D:,d Dt, D,,%/ D: .... ), [62] 

where ... represents quantities which include the effective density and viscosity. 
Since the interracial pressure difference/~2,- ffl~ is a scalar, it can be a function of the 679 

variables in the Appendix. We expect p2 i --pl i to be non-zero in situations where surface 
tension is important. The exact instantaneous expression which we wish to generalize for our 
constitutive equations is 

p2, - Pl, = ~o', [64] 

where K is the mean curvature of the interface. Thus, we shall assume that /J2i-/~1, is a 
function of the geometry of the interface, and the surface tension tr, but shall assume that 
/~2,-/~l, does not depend on the time derivative terms DjaJDt or Djrd/Dt. 

Thus we assume that 

:~,-:,, =/~(,~,, Iv~,l, r~, ,~,...), [65] 
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where G is the coefficient of surface tension. We note that in the absence of surface tension, we 
must have 

~2, = P,,. [66] 

If surface tension is not neglected, then the jump condition for momentum becomes 
Mj + _M2 = M,,, where Mm is the mixture momentum source, given by Ishii is 

_Mm = 2/(r2lt~Voe2 + _Mm H , [67] 

where t~ is the coefficient of surface tension, which is assumed to be a constant, /~2~ is the 
average curvature of the interface. The term Mm H represents forces due to the changing 
curvature. We shall assume that _M,, H = 0. 

The jump condition for momentum becomes 

M I  d -]-l~liVOfl 4" -M2 d + ff2/VO/2 = 2/~21t~Vat 2 . [68] 

When no motion is present, -Mk d = 0, and we have 

(P21 -- e l l ) rOe2 = 2/-I12t~VOe2 • [69] 

Thus 

/~2, -/~1, = 2/~rl2(~, [70] 

as expected. 
Note from[70], that if the two-phase flow is a bubbly flow with uniform bubbles, then/-)2, is 

a constant, and 

V/~2, = V/31,. [71] 

Thus it appears that unequal pressure models do not always give rise to pressure gradient 
forces. However, there is an effect of surface tension in this model. 

The phasic momentum equations become 

,,a_~d + _ .  Vfd) 

- ¥ f l  + 2/~c,~V,~d + a,~p~_d, 

_/a~c • V_~c) = - acV~c  + t L  v . [ a c ( ~  + _ 

+ _Mc a + acpcg_c, 

[72] 

where _Me a is given by[58],/~c-/Jcl is given by[61], and the turbulent stresses are discussed in 
section 4.1. 

4.4 A separated flow 

The effect of the constitutive equations are examined for a special separated flow. We 
emphasize that we do not expect the constitutive equations developed for mixed flows to 
adequately describe separated flow. 

[731 
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Neglect the turbulent stresses, and the virtual mass and lift forces. Assume further that 
_Vk = _Vk(y)_/, ak = ak(y), and _gk =--g_]. With these assumptions, the continuity equations are 
satisfied identically. The momentum equations in the y-direction become 

0 = - ak ~ -- a~,g .  [74] 

The momentum equations in the x-direction become 

, 0 = , 
[75] 

From[74], we see that (provided t~ # t~2) we have either 

O ' 1 - - - - 0  ~ 

= - A g ,  0y 
[76] 

o r  

0/2=0, 

= - A g .  
Oy 

[77] 

Thus the flow must indeed be separated, with bands or layers of fluid 1 separated by layers 
of fluid 2. This particular calculation does not show which, if any, of these flows is stable, but it 
is obvious that in order to avoid Taylor instabilities, the denser fluid must occupy the bottom 
layer, with the lighter fluid on top. Moreover, if the shear is too great, there exists the 
possibility of a Kelvin-Helmholtz instability. 

This calculation does not pretend to show the evolution to or from separated flow using 
constitutive equations derived for "mixed" flows. It does suggest, however, that separated 
flows can arise using models derived for mixed flows. 

4.5 Initial and boundary conditions 

To prove that the model is well posed, subject to appropriate initial and boundary conditions 
is beyond the scope of this paper. We shall, however, discuss physically appropriate initial and 
boundary condition, and argue that the equations are equally as well posed as the Navier- 
Stokes equation. 

As initial conditions, it suffices to prescribe the phasic volume fractions ~k and the velocities 
_fk at t = 0. For boundary conditions, it is appropriate to prescribe no-slip conditions on solid 
walls. At an inlet, we must prescribe /~k, ak, and some information about relative flow rates, 
such as _fl- _~2. The mixture mass flux should then be determined by the flow situations. At 
outlets, it is necessary to prescribe/~k. 

Since the present model contains ~iscous terms, the partial differential equations are 
parabolic, and appears to be quite similar to the problem of the flow of two Navier-Stokes 
fluids. Therefore, this model is well posed in the same sense as the classical single phase fluid 
flow equations. 

5. C O N C L U S I O N  

In this paper, we have applied the general principles for formulating constitutive equations 
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to the problem of determining an appropriate multidimensional two-fluid two-phase model. For 
simplicity, energetic effects were ignored. 

In formulating constitutive equations, known forces and effects were accounted for. This 
leads to constitutive relations which are phenomenologically appealing, and which fit within the 
general framework for determining constitutive equations. 

The equations of motion which we have derived are: 

Oaa~d + V" ad~d_~d = 0 [78] 
3t 

Oac~c 4- V. ac~c~_,. = O, [79] 
Ot 

_ / aVZd _ \ 

-_M~ d + 2 / ~ V a c  + a a ~ d ,  [80] 

=/a~,. ) 
~cpc~-yi-+ _¢..v~ = - a c v L  + ( L  - L)v,~c + v .  [,~c(~ + ~ ) 1  

+ _Md d + act~,,,gc. [81] 

Here, -_Mc d is given by[58], ~ is given by[42] and [45], and r__k r is given by[49]. 
Let us discuss [78]-[81] in comparison with other models given in the literature. Since most 

other authors do not attempt to observe invariance requirements, there are some discrepancies 
between their work, and the present paper. The specific differences occur in the virtual mass 
terms, where all other authors use a non-invariant form. In addition, the expression for r__~ r used 
in this paper is more general than that given by Ishii (1975). 

The model given by [78]-[81] is still quite complicated, and must be supplemented by 
experiments which both test the generality of the constitutive equations proposed herein, and 
evaluate the coefficients in the terms included in these constitutive equations. From the general 
model, which contains 2771 scalar functions, the specific model of section 4 contains 19 scalar 
functions which must be determined to specify the model. In addition, most of the known 
forces in dispersed two phase flow are contained in the above model. These constitutive 
relations also satisfy all general constitutive requirements except equipresence. This, then, is a 
model which, while not completely general, should be useful in the analysis of dispersed 
multidimensional two-phase flow. 

The overwhelming number of scalar functions which must be evaluated in the general model 
preclude its use in any practical situation. In retrospect, this is not totally unexpected, since the 
general model must be able to handle an extremely large class of flow conditions. The 
importance of the general constitutive equation approach, therefore, is not in determining a 
model, but instead, in providing a "filter" for specific terms within a model derived for given 
flow conditions. The dispersed flow model presented in section 4 provides an excellent example. It 
is desirable to include a virtual mass force in such a set of equations. The general approach shows 
that certain forms of the virtual mass acceleration do not satisfy the invariance requirements, and 
therefore must be ruled out. Thus, all models derived for specific flow situations must fit within the 
general framework if they are to be considered valid. 
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APPENDIX 

Consider the process of constructing the objective scalars, vectors and tensors which can 
appear in the constitutive equations. The scalars can be constructed from vectors and tensors. 
Furthermore, the determination of the vectors ~ and the tensors T~, needed in [40] and [41] is 
done in a "bootstrapping" manner, with the tensors used to determine other vectors, and 
vectors used to determine other tensors. 

The natural vectors in [38] are 

= Val, _V2 = _vl -_v2, Y3 = _a12. [A1] 

The symmetric tensors in [38] are 

~ , = D ,  b, ~2=__/~b. [A2] 
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The tensor D~z is not symmetric. Therefore, we write D~2 in terms of its symmetric and 
antisymmetric parts. We have 

1 1 D,2 = ~(D,2 + Dr)  + ~ (D,2 - Dtr). [A3] 

But 

+ = % - 

Thus, only the antisymmetric part of D,2 is needed in the constitutive equations. For the 
purposes of this appendix, we shall retain only the antisymmetric part of D~2. Moreover, note 
that an antisymmetric tensor is completely determined from its vector. We shall retain this 
vector in the list of vectors. Thus, we have 

_V 4 = V X _/31 - -  V X _/)2, [A4] 

which is the vector constructed from the antisymmetric tensor 

~ [V(_~I - fz )  - (_~l - f g V ] .  

From the tensors in [A2], we can construct more tensors, for use in [41]. The argument used 
is given by Truesdell & Noll (1965). We have 

[A5] 

New vectors can be constructed by taking the dot product of the tensors in [A1] and [A5], 
with the vectors in [A1]. Thus, we have 

_Vk = _T_',.. V/; i = 1  . . . . .  8; 

j = 1 . . . . .  4; 

k = 4 . . . . .  36. [A6] 

We can now construct symmetric tensors from [A2] and [A6] by forming the symmetric dyads. 
We have 

~k = _v,E + E E ;  i = I . . . . .  36; 

j = l  . . . . .  i; 

k = 9 .. . . .  674. [AT] 
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The process terminates at this level. To see this, consider the possibility of constructing a 
new vectorial quantity from ~, k -> 9, and ~., ] = 1 .. . . .  36. We have 

~ ~ = Y,.(Yn ~ ) +  Y.(Y,." ~), 

which is a combination of y,, and Yn. Thus no new vectors can be constructed. 
We also note that the process of constructing new tensors, given in [A5], gives no new 

tensors. To see this, consider 

t~. (_v,_v, + _v,_v:) = ( t ~  _v,) v, + ( t ~  _v,.) _v, 

= y~.v,.+ y,.~ 

Also, 

Thus the sum of these is 

( ~ +  ~Y,). ~k = ~Y.+~Y, .  

(Y~Y, + ~Yt)+(Y,.~ + ~Ym), 

which is included in [A7]. 
Consider the scalar invariants which can be constructed from [38]. The natural scalars are 

S1 =Otl, $2 = Dial/D/, $3 = D2al/D/. [A8] 

In addition, we note that the scalar product of two vectors is a scalar: 

i = 1 .. . . .  36; 

j - -1  . . . . .  i; 

k = 4 .. . . .  670. [Ag] 

In addition, the scalar invariants of the tensors in [A2] and [A5] are 

Sk = tr(~.), j = l  . . . . .  8 

k = 671 ... . .  679. [A10] 

We note that the scalars of the tensors formed by the product of two vectors [A7] are 
included in the scalars in [A9]. 

Consider the magnitude of the problem of determining constitutive equations for the variables 
in [17]. Note that [17] contains four independent tensor functions. Equation [41], together with 
[A2], [AS] and [A7] give 4 x 674 = 2696 scalar functions needed to specify ~ and r3 r. Each of these 
2696 scalar functions can depend on all 679 scalar variables. 

There are two independent vector functions in [17]. From [40], and [A1], [A4] and [A6], we 
see that 2 x 36 = 72 scalar functions are needed to specify _MId and _M,,. Again, each of these 72 
scalar functions can depend on all 679 scalars. 

In addition, there are three scalar functions in [17]. Thus, in all, there are 2696+72+3= 
2771 scalar functions needed to specify the constitutive equations in the general model. 


